Skip to content Skip to sidebar Skip to footer

When Using the Continuous Review System Stock Outs Can Occur

Abstract

This paper examines a continuous review inventory model for perishable items with two demand classes. Demands for both classes occur according to Poisson process. The items in inventory are perishable products and have exponential lifetimes. The time after placing an order is an exponential random variable. When the on-hand inventory drops to pre-specified level s, only the priority customer demands are met whereas the demands from ordinary customers are lost. And also, the demand occurring stock-out periods are lost. The inventory system is characterized by continuous-time Markov process and steady-state probabilities are derived. The expected cost function is formulated and a numerical study is provided for optimization.

Access options

Buy single article

Instant access to the full article PDF.

39,95 €

Price includes VAT (Indonesia)

References

  1. Escalona, P., Ordóñez, F., Kauak, I.: Critical level rationing in inventory systems with continuously distributed demand. OR Spectr. 39, 273–301 (2017). https://doi.org/10.1007/s00291-016-0452-0

    Article  Google Scholar

  2. Gürler, Ãœ., Özkaya, B.Y.: Analysis of the (s, S) policy for perishables with a random lifetime. IIE Trans. 40, 759–781 (2008)

    Article  Google Scholar

  3. Haijema, R., Van der Wal, J., Van Dijk, N.M.: Blood platelet production: a multi-type perishable inventory problem. In: Fleuren, H., den Hertog, D., Kort, P. (eds.) Operations Research Proceedings. Springer, Berlin (2005)

    Google Scholar

  4. Haijema, R.: A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life. Int. J. Prod. Econ. 143, 434–439 (2013)

    Article  Google Scholar

  5. Isotupa, K.P.S.: An (s, Q) Markovian inventory system with lost sales and two demand classes. Math. Comput. Model. 43, 687–694 (2006)

    Article  Google Scholar

  6. Isotupa, S.: Cost analysis of an (S - 1, S) inventory system with two demand classes and rationing. Ann. Oper. Res. 233, 411–421 (2015). https://doi.org/10.1007/s10479-013-1407-3

    Article  Google Scholar

  7. Jeganathan, K., Kathiresan, J., Anbazhagan, N.: A retrial inventory system with priority customers and second optional service. Opsearch 53, 808–834 (2016). https://doi.org/10.1007/s12597-016-0261-x

    Article  Google Scholar

  8. Kalpakam, S., Arivarignan, G.: A continuous review perishable inventory model. Statistics 19, 389–398 (1988)

    Article  Google Scholar

  9. Kalpakam, S., Sapna, K.P.: Continuous review (s, S) inventory system with random lifetimes and positive lead times. Oper. Res. Lett. 16, 115–119 (1994)

    Article  Google Scholar

  10. Kalpakam, S., Shanti, S.: A continuous review perishable system with renewal demands. Ann. Oper. Res. 143, 211–225 (2006)

    Article  Google Scholar

  11. Kaspi, H., Perry, D.: Inventory systems of perishable commodities. Adv. Appl. Probab. 15, 674–685 (1983)

    Article  Google Scholar

  12. Kleijn, M.J., Dekker, R.: An overview of inventory systems with several demand classes. In: Speranza, M.G., Stähly, P. (eds.) New Trends in Distribution Logistics. Lecture Notes in Economics and Mathematical Systems, vol. 480. Springer, Berlin (1999)

    Google Scholar

  13. Lian, Z., Liu, X., Zhao, N.: A perishable inventory model with Markovian renewal demands. Int. J. Prod. Econ. 121, 176–182 (2009)

    Article  Google Scholar

  14. Liu, L.: (s, S) Continuous review models for inventory with random lifetimes. Oper. Res. Lett. 9, 161–167 (1990)

    Article  Google Scholar

  15. Liu, L., Lian, Z.: (s, S) Continuous review models for products with fixed lifetimes. Oper. Res. 47(1), 150–158 (1999)

    Article  Google Scholar

  16. Liu, L., Shi, D.H.: An (s, S) model for inventory with exponential lifetimes and renewal demands. Nav. Res. Logist. 46(1), 39–56 (1999)

    Article  Google Scholar

  17. Liu, M., Feng, M., Wong, C.Y.: Flexible service policies for Markov inventory system with two demand classes. Int. J. Prod. Econ. 151, 180–185 (2014)

    Article  Google Scholar

  18. Melchiors, P., Dekker, R., Kleijn, M.J.: Inventory rationing in an (s, Q) inventory model with lost sales and two demand classes. J. Oper. Res. Soc. 51(1), 111–122 (2000)

    Article  Google Scholar

  19. Moon, I., Kang, S.: Rationing policies for some inventory systems. J. Oper. Res. Soc. 49(5), 509–518 (1998)

    Article  Google Scholar

  20. Nahmias, S., Demmy, W.S.: Operating characteristics of an inventory system with rationing. Manag. Sci. 27(11), 1236–1245 (1981)

    Article  Google Scholar

  21. Ravichandran, N.: Probabilistic analysis of a continuous review perishable inventory system. OR Spektrum 10, 23–27 (1988)

    Article  Google Scholar

  22. Ravichandran, N.: Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand. Eur. J. Oper. Res. 84, 444–457 (1995)

    Article  Google Scholar

  23. Saranya, N., Lawrence, A.S.: A stochastic inventory system with replacement of perishable items. Opsearch 56, 563–582 (2019). https://doi.org/10.1007/s12597-019-00372-5

    Article  Google Scholar

  24. Tiwari, S., Daryanto, Y., Wee, H.M.: Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. J. Clean. Prod. 192, 281–292 (2018)

    Article  Google Scholar

  25. Veinott, A.F.: Optimal policy in a dynamic, single product, nonstationary inventory model with several demand classes. Oper. Res. 13(5), 761–778 (1965)

    Article  Google Scholar

  26. Vrat, P., Gupta, R., Bhatnagar, A., Pathak, D.K., Fulzele, V.: Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions. Opsearch 55, 601–627 (2018). https://doi.org/10.1007/s12597-018-0338-9

    Article  Google Scholar

  27. Williams, C.L., Pattuwo, B.E.: A perishable inventory model with positive order lead times. Eur. J. Oper. Res. 116, 352–373 (1999)

    Article  Google Scholar

  28. Zhao, N., Lian, Z.: A queuing-inventory system with two classes of customers. Int. J. Prod. Econ. 129, 225–231 (2011)

    Article  Google Scholar

Download references

Acknowledgements

We would like to thank the anonymous referees who have improved our work with their invaluable comments.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Umay Uzunoglu Kocer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The pseudo-convex functions have many properties of convex functions, particularly about derivative properties and finding local minima. If the total cost function \( TC(s+1,Q)-TC(s,Q)\) is non-positive, then the total cost function values are non-increasing of s; that is the total cost function is pseudo-convex.

Proof of Theorem 1

For a fixed Q, let the first difference \(TC(s+1,Q)-TC(s,Q)\) be \(\frac{N(s)}{D(s)}\).

$$\begin{aligned} N(s)=\left( h+g_{1} \gamma \right) N_{1}(s)+(K+cQ) N_{2}(s)+ N_{3}(s)+N_{4}(s) \end{aligned}$$

where

$$\begin{aligned} N_{1}(s)&= \mu ^{2} \left[ ( \lambda _{2}+Q \gamma ) VY+X( \lambda _{1}+QV- \lambda _{2} W) \right] +\mu Y \\ &\quad+\, C \mu \left\{ V(s+1)+WQ \left[ \lambda _{1}+(s+1)\gamma \right] +A_{s+2} \left[ (s+1)X-Y \right] \right\} \\ N_{2}(s)&= \mu \left[ 1+\mu V(\lambda _{2}+Q \gamma )-C A_{s+2}\right] \\ N_{3}(s)&= -\,g_{2} \lambda _{1}( \mu X+C) \\ N_{4}(s)&= g_{3} \lambda _{2}\left[ 1+\mu V(\lambda _{2}+Q \gamma )+\mu A_{s+2}X-(1+\mu Z)(\mu X +C)\right] \end{aligned}$$

and

$$\begin{aligned} X&= \sum _{n=s+2}^{Q+s+1} \frac{1}{\lambda _{1}+\lambda _{2}+n \gamma }\\ Y&= \sum _{n=s+2}^{Q+s+1} \frac{n}{\lambda _{1}+\lambda _{2}+n \gamma }\\ V&= \sum _{n=1}^{s+1} \frac{1}{(\lambda _{1}+n \gamma )\left[ \lambda _{1}+\lambda _{2}+(Q+n) \gamma \right] } A_{n}\\ W&= \sum _{n=1}^{s+1} \frac{n}{(\lambda _{1}+n \gamma )\left[ \lambda _{1}+\lambda _{2}+(Q+n) \gamma \right] } A_{n}\\ Z&= \sum _{n=1}^{s+1} \frac{1}{(\lambda _{1}+n \gamma )} A_{n}\\ C&= \frac{\lambda _{2}}{\lambda _{1}+\lambda _{2}+(s+1) \gamma } \end{aligned}$$

The dominator D(s) is always positive. To prove that TC(s,Q) is pseudo-convex, it sufficies to show that N(s) is an increasing function. Let \(\bigtriangleup N(s)=N(s+1)-N(s)\). The difference is also given in four parts.

Let \(\bigtriangleup N_{1}(s)=N_{1}(s+1)-N_{1}(s)\); and it is given as

$$\begin{aligned}&\bigtriangleup N_{1}(s)=\mu A_{s+2}X\lambda _{2}Q \gamma (\lambda _{1}+\lambda _{2}+\mu (s+1)) \\&\quad +\frac{\mu A_{s+2}X}{\lambda _{1}+(s+2)\gamma }\left\{ \lambda _{2}Q \mu \gamma (\lambda _{1}+\lambda _{2}+\lambda _{2}(s+1))+\lambda _{2}(\lambda _{1}+\lambda _{2})M4+\lambda _{1}Q \mu M3 \right\} \\&\quad +\mu \gamma A_{s+2}Y \left\{ Q \mu \left[ \lambda _{1}+\lambda _{2}+(s+1)\gamma \right] +\lambda _{2}\left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] \right\} \\&\quad +\mu V\left\{ \frac{Q \mu (\lambda _{2}+Q \gamma )(\lambda _{1}+\lambda _{2})}{M1} +\frac{\lambda _{2}^{2}(\lambda _{1}+\lambda _{2}+Q \gamma )}{M3} \right\} \\&\mu \lambda _{2} \gamma W\left( \frac{Q \mu }{M1}+\frac{\lambda _{2}}{M3}\right) +(\lambda _{1}+\lambda _{2})\left( \frac{Q}{M1}+\frac{\lambda _{2}}{M3}\right) \\&\bigtriangleup N_{2}(s)=\gamma A_{s+2}\left[ \frac{Q \mu +\lambda _{2}\left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] }{M1} \right] \\&\bigtriangleup N_{3}(s)= \frac{Q \mu \gamma }{M1}+\frac{\gamma }{M3} \\&\bigtriangleup N_{4}(s)= \mu \gamma \left[ \frac{Q \mu }{M1}+\frac{1}{M3} \right] Z +\frac{Q \mu \gamma (A_{s+2}+1)}{M1}+\frac{\gamma }{M3} \end{aligned}$$

where

$$\begin{aligned} M1&= \left[ \lambda _{1}+\lambda _{2}+(s+2)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] \\ M2&= \left[ \lambda _{1}+(s+2)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] \\ M3&= \left[ \lambda _{1}+\lambda _{2}+(s+1)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(s+2)\gamma \right] \\ M4&= \left[ \lambda _{1}+(s+2)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(s+2)\gamma \right] \end{aligned}$$

Then

$$\begin{aligned} \bigtriangleup N(s)=(h+g_{1})\bigtriangleup N_{1}(s)+(K+cQ)\mu \bigtriangleup N_{2}(s) +g_{2}\lambda _{1} \bigtriangleup N_{3}(s)+g_{3}\lambda _{2} \bigtriangleup N_{4}(s) \end{aligned}$$

Since \(\bigtriangleup N(s) > 0\), N(s) is an increasing function of s. Therefore TC(s,Q) is pseudo-convex. \(\square \)

Rights and permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uzunoglu Kocer, U., Yalcin, B. Continuous review (s, Q) inventory system with random lifetime and two demand classes. OPSEARCH 57, 104–118 (2020). https://doi.org/10.1007/s12597-019-00393-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s12597-019-00393-0

Keywords

  • Markov process
  • Perishable inventory
  • Two demand classes
  • Random lifetime
  • Random lead time

flinchumstren1944.blogspot.com

Source: https://link.springer.com/article/10.1007/s12597-019-00393-0

Post a Comment for "When Using the Continuous Review System Stock Outs Can Occur"