When Using the Continuous Review System Stock Outs Can Occur
Abstract
This paper examines a continuous review inventory model for perishable items with two demand classes. Demands for both classes occur according to Poisson process. The items in inventory are perishable products and have exponential lifetimes. The time after placing an order is an exponential random variable. When the on-hand inventory drops to pre-specified level s, only the priority customer demands are met whereas the demands from ordinary customers are lost. And also, the demand occurring stock-out periods are lost. The inventory system is characterized by continuous-time Markov process and steady-state probabilities are derived. The expected cost function is formulated and a numerical study is provided for optimization.
Access options
Buy single article
Instant access to the full article PDF.
39,95 €
Price includes VAT (Indonesia)
References
-
Escalona, P., Ordóñez, F., Kauak, I.: Critical level rationing in inventory systems with continuously distributed demand. OR Spectr. 39, 273–301 (2017). https://doi.org/10.1007/s00291-016-0452-0
-
Gürler, Ãœ., Özkaya, B.Y.: Analysis of the (s, S) policy for perishables with a random lifetime. IIE Trans. 40, 759–781 (2008)
-
Haijema, R., Van der Wal, J., Van Dijk, N.M.: Blood platelet production: a multi-type perishable inventory problem. In: Fleuren, H., den Hertog, D., Kort, P. (eds.) Operations Research Proceedings. Springer, Berlin (2005)
-
Haijema, R.: A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life. Int. J. Prod. Econ. 143, 434–439 (2013)
-
Isotupa, K.P.S.: An (s, Q) Markovian inventory system with lost sales and two demand classes. Math. Comput. Model. 43, 687–694 (2006)
-
Isotupa, S.: Cost analysis of an (S - 1, S) inventory system with two demand classes and rationing. Ann. Oper. Res. 233, 411–421 (2015). https://doi.org/10.1007/s10479-013-1407-3
-
Jeganathan, K., Kathiresan, J., Anbazhagan, N.: A retrial inventory system with priority customers and second optional service. Opsearch 53, 808–834 (2016). https://doi.org/10.1007/s12597-016-0261-x
-
Kalpakam, S., Arivarignan, G.: A continuous review perishable inventory model. Statistics 19, 389–398 (1988)
-
Kalpakam, S., Sapna, K.P.: Continuous review (s, S) inventory system with random lifetimes and positive lead times. Oper. Res. Lett. 16, 115–119 (1994)
-
Kalpakam, S., Shanti, S.: A continuous review perishable system with renewal demands. Ann. Oper. Res. 143, 211–225 (2006)
-
Kaspi, H., Perry, D.: Inventory systems of perishable commodities. Adv. Appl. Probab. 15, 674–685 (1983)
-
Kleijn, M.J., Dekker, R.: An overview of inventory systems with several demand classes. In: Speranza, M.G., Stähly, P. (eds.) New Trends in Distribution Logistics. Lecture Notes in Economics and Mathematical Systems, vol. 480. Springer, Berlin (1999)
-
Lian, Z., Liu, X., Zhao, N.: A perishable inventory model with Markovian renewal demands. Int. J. Prod. Econ. 121, 176–182 (2009)
-
Liu, L.: (s, S) Continuous review models for inventory with random lifetimes. Oper. Res. Lett. 9, 161–167 (1990)
-
Liu, L., Lian, Z.: (s, S) Continuous review models for products with fixed lifetimes. Oper. Res. 47(1), 150–158 (1999)
-
Liu, L., Shi, D.H.: An (s, S) model for inventory with exponential lifetimes and renewal demands. Nav. Res. Logist. 46(1), 39–56 (1999)
-
Liu, M., Feng, M., Wong, C.Y.: Flexible service policies for Markov inventory system with two demand classes. Int. J. Prod. Econ. 151, 180–185 (2014)
-
Melchiors, P., Dekker, R., Kleijn, M.J.: Inventory rationing in an (s, Q) inventory model with lost sales and two demand classes. J. Oper. Res. Soc. 51(1), 111–122 (2000)
-
Moon, I., Kang, S.: Rationing policies for some inventory systems. J. Oper. Res. Soc. 49(5), 509–518 (1998)
-
Nahmias, S., Demmy, W.S.: Operating characteristics of an inventory system with rationing. Manag. Sci. 27(11), 1236–1245 (1981)
-
Ravichandran, N.: Probabilistic analysis of a continuous review perishable inventory system. OR Spektrum 10, 23–27 (1988)
-
Ravichandran, N.: Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand. Eur. J. Oper. Res. 84, 444–457 (1995)
-
Saranya, N., Lawrence, A.S.: A stochastic inventory system with replacement of perishable items. Opsearch 56, 563–582 (2019). https://doi.org/10.1007/s12597-019-00372-5
-
Tiwari, S., Daryanto, Y., Wee, H.M.: Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. J. Clean. Prod. 192, 281–292 (2018)
-
Veinott, A.F.: Optimal policy in a dynamic, single product, nonstationary inventory model with several demand classes. Oper. Res. 13(5), 761–778 (1965)
-
Vrat, P., Gupta, R., Bhatnagar, A., Pathak, D.K., Fulzele, V.: Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions. Opsearch 55, 601–627 (2018). https://doi.org/10.1007/s12597-018-0338-9
-
Williams, C.L., Pattuwo, B.E.: A perishable inventory model with positive order lead times. Eur. J. Oper. Res. 116, 352–373 (1999)
-
Zhao, N., Lian, Z.: A queuing-inventory system with two classes of customers. Int. J. Prod. Econ. 129, 225–231 (2011)
Acknowledgements
We would like to thank the anonymous referees who have improved our work with their invaluable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The pseudo-convex functions have many properties of convex functions, particularly about derivative properties and finding local minima. If the total cost function \( TC(s+1,Q)-TC(s,Q)\) is non-positive, then the total cost function values are non-increasing of s; that is the total cost function is pseudo-convex.
Proof of Theorem 1
For a fixed Q, let the first difference \(TC(s+1,Q)-TC(s,Q)\) be \(\frac{N(s)}{D(s)}\).
$$\begin{aligned} N(s)=\left( h+g_{1} \gamma \right) N_{1}(s)+(K+cQ) N_{2}(s)+ N_{3}(s)+N_{4}(s) \end{aligned}$$
where
$$\begin{aligned} N_{1}(s)&= \mu ^{2} \left[ ( \lambda _{2}+Q \gamma ) VY+X( \lambda _{1}+QV- \lambda _{2} W) \right] +\mu Y \\ &\quad+\, C \mu \left\{ V(s+1)+WQ \left[ \lambda _{1}+(s+1)\gamma \right] +A_{s+2} \left[ (s+1)X-Y \right] \right\} \\ N_{2}(s)&= \mu \left[ 1+\mu V(\lambda _{2}+Q \gamma )-C A_{s+2}\right] \\ N_{3}(s)&= -\,g_{2} \lambda _{1}( \mu X+C) \\ N_{4}(s)&= g_{3} \lambda _{2}\left[ 1+\mu V(\lambda _{2}+Q \gamma )+\mu A_{s+2}X-(1+\mu Z)(\mu X +C)\right] \end{aligned}$$
and
$$\begin{aligned} X&= \sum _{n=s+2}^{Q+s+1} \frac{1}{\lambda _{1}+\lambda _{2}+n \gamma }\\ Y&= \sum _{n=s+2}^{Q+s+1} \frac{n}{\lambda _{1}+\lambda _{2}+n \gamma }\\ V&= \sum _{n=1}^{s+1} \frac{1}{(\lambda _{1}+n \gamma )\left[ \lambda _{1}+\lambda _{2}+(Q+n) \gamma \right] } A_{n}\\ W&= \sum _{n=1}^{s+1} \frac{n}{(\lambda _{1}+n \gamma )\left[ \lambda _{1}+\lambda _{2}+(Q+n) \gamma \right] } A_{n}\\ Z&= \sum _{n=1}^{s+1} \frac{1}{(\lambda _{1}+n \gamma )} A_{n}\\ C&= \frac{\lambda _{2}}{\lambda _{1}+\lambda _{2}+(s+1) \gamma } \end{aligned}$$
The dominator D(s) is always positive. To prove that TC(s,Q) is pseudo-convex, it sufficies to show that N(s) is an increasing function. Let \(\bigtriangleup N(s)=N(s+1)-N(s)\). The difference is also given in four parts.
Let \(\bigtriangleup N_{1}(s)=N_{1}(s+1)-N_{1}(s)\); and it is given as
$$\begin{aligned}&\bigtriangleup N_{1}(s)=\mu A_{s+2}X\lambda _{2}Q \gamma (\lambda _{1}+\lambda _{2}+\mu (s+1)) \\&\quad +\frac{\mu A_{s+2}X}{\lambda _{1}+(s+2)\gamma }\left\{ \lambda _{2}Q \mu \gamma (\lambda _{1}+\lambda _{2}+\lambda _{2}(s+1))+\lambda _{2}(\lambda _{1}+\lambda _{2})M4+\lambda _{1}Q \mu M3 \right\} \\&\quad +\mu \gamma A_{s+2}Y \left\{ Q \mu \left[ \lambda _{1}+\lambda _{2}+(s+1)\gamma \right] +\lambda _{2}\left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] \right\} \\&\quad +\mu V\left\{ \frac{Q \mu (\lambda _{2}+Q \gamma )(\lambda _{1}+\lambda _{2})}{M1} +\frac{\lambda _{2}^{2}(\lambda _{1}+\lambda _{2}+Q \gamma )}{M3} \right\} \\&\mu \lambda _{2} \gamma W\left( \frac{Q \mu }{M1}+\frac{\lambda _{2}}{M3}\right) +(\lambda _{1}+\lambda _{2})\left( \frac{Q}{M1}+\frac{\lambda _{2}}{M3}\right) \\&\bigtriangleup N_{2}(s)=\gamma A_{s+2}\left[ \frac{Q \mu +\lambda _{2}\left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] }{M1} \right] \\&\bigtriangleup N_{3}(s)= \frac{Q \mu \gamma }{M1}+\frac{\gamma }{M3} \\&\bigtriangleup N_{4}(s)= \mu \gamma \left[ \frac{Q \mu }{M1}+\frac{1}{M3} \right] Z +\frac{Q \mu \gamma (A_{s+2}+1)}{M1}+\frac{\gamma }{M3} \end{aligned}$$
where
$$\begin{aligned} M1&= \left[ \lambda _{1}+\lambda _{2}+(s+2)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] \\ M2&= \left[ \lambda _{1}+(s+2)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(Q+s+2)\gamma \right] \\ M3&= \left[ \lambda _{1}+\lambda _{2}+(s+1)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(s+2)\gamma \right] \\ M4&= \left[ \lambda _{1}+(s+2)\gamma \right] \left[ \lambda _{1}+\lambda _{2}+(s+2)\gamma \right] \end{aligned}$$
Then
$$\begin{aligned} \bigtriangleup N(s)=(h+g_{1})\bigtriangleup N_{1}(s)+(K+cQ)\mu \bigtriangleup N_{2}(s) +g_{2}\lambda _{1} \bigtriangleup N_{3}(s)+g_{3}\lambda _{2} \bigtriangleup N_{4}(s) \end{aligned}$$
Since \(\bigtriangleup N(s) > 0\), N(s) is an increasing function of s. Therefore TC(s,Q) is pseudo-convex. \(\square \)
Rights and permissions
About this article
Cite this article
Uzunoglu Kocer, U., Yalcin, B. Continuous review (s, Q) inventory system with random lifetime and two demand classes. OPSEARCH 57, 104–118 (2020). https://doi.org/10.1007/s12597-019-00393-0
-
Accepted:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1007/s12597-019-00393-0
Keywords
- Markov process
- Perishable inventory
- Two demand classes
- Random lifetime
- Random lead time
flinchumstren1944.blogspot.com
Source: https://link.springer.com/article/10.1007/s12597-019-00393-0
Post a Comment for "When Using the Continuous Review System Stock Outs Can Occur"